
International Journal of Scientific & Engineering Research, Volume 4, Issue 6, June-2013 1211
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

Query Optimization Using Case Base Reasoning
With Replacement Policy

Pragya Shukla, Rohini Upadhyay

Abstract— A query optimizer is a core component of any Database Management System. Multiple approaches have been suggested
which were based on framework of classical query evaluation procedures that heavily dependent on metadata. There are computational
environments where metadata acquisition and support is very expensive. In this paper query optimization technique using case based
reasoning (machine learning technique) for ubiquitous computing environment is deliberated. In this technique a new problem is solved by
finding a similar past case, and reusing it in the new problem situation. As CBR is an approach to incremental, sustained learning, since a
new experience is retained each time a problem has been solved, making it immediately available for future problems which in return may
create a bulky case base. Thus we were proposing a technique of dynamic deletion of irrelevant cases from case base. Through which
system can detect the inappropriate case and replace them with new case in order to maintain size of case base.

Index Terms— Case-based reasoning, dynamicity, machine learning, metadata, similarity level, traditional query optimization techniques,
ubiquitous computing environment.

——————————  ——————————

1 INTRODUCTION

UERY optimization is the process of selecting the most
efficient query evaluation plan from among the option
available for processing a given query. For appropriate
performance of query processing it is excepted from sys-

tem to construct a query evaluation plan that minimizes the
cost of query evaluation which can done through query opti-
mization. Query optimizers examine all expression which is
equivalent to the new query and select the suitable cheapest
plan. The area of query optimization in database field is very
vast. It has been studied in a great variety of contexts and from
many different angles which provides many miscellaneous
solutions. Most of this approaches were based on classical
query optimization were dependency on metadata is very
high. Due to this dependency it may not work effectively in all
type of computational environment. Ubiquitous environment
is one of the appropriate examples where information tech-
nology become pervasive, embedded in environment, hetero-
geneous, sovereign and invisible to users. According to this
vision network will be saturated by computation and wireless
communication capacity which will be gracefully integrated
with user.

Metadata for query processing attainment and preservation
is not feasible in ubiquitous environment. Thus environment
must provide a set of procedures to retrieve information from
minimized resources. Additionally, resources used in this en-
vironment have physical limitations that restrict their suitable

operations like distributed in different locations, limited stor-
age and processing capability, power supply etc[6].

Query optimization is essential to expand the performance
of query processing through which information can be ac-
cessed from any location and at any time. Antagonises in
ubiquitous environment for query optimization are conferred
in this paper. Here we propose a query optimization approach
which will deal with these challenges and work effectively in
lack of metadata [3],[6]. Also we address dynamicity man-
agement in proposed approach through replacement policy
which provides a better framework for the resources operates
in ubiquitous environment. Here we were trying to use ma-
chine learning techniques for optimization.

The remaining of this paper is organized as follows. Section
2 contains traditional query optimization techniques which
were used up till now. Section 3 contains our optimization
technique based on case based reasoning a machine learning
technique. Section 4 contains dynamicity management tech-
quie. Section 5 presents the conclusion of our work.

2 TRADITIONAL QUERY OPTIMIZATION TECHNIQUE
 We provide an abstraction of traditional query optimization
process. The modules that participate in the classical query
evaluation process are the query parser, query optimizer, code
generator and the query executor. The query parser is in
charge to verify if the query is syntactically (well formed) and
semantically correct. The output of this module is a tentative
algebraic query tree. It is a sequence of algebraic operations
(e.g. selection, projection and joins) that indicate the opera-
tions that must be performed on the data for solving the que-
ry. Then, a valid query must to be optimized; this is carried
out in by the Query optimizer module. That estimates the best
order to perform the operations included by the algebraic que-
ry tree and assigns to each algebraic operator an algorithm to
execute it. The result is the execution plan. When the query is
optimized, a codification of the execution tree must be per-
formed by the code generator, to be executed by the last mod-

Q

————————————————
• Pragya Shukla is withInstitute of Engineering and Technology – DAVV,

Indore, India. E-mail:pragyashukla_iet@yahoo.com
• Rohini Upadhyay is student with Institute of Engineering and Technology

– DAVV, Indore, India. E-mail:rohini1dec@gmail.com

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 6, June-2013 1212
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

ule, the query executor. Finally, the data that solve the query is
obtained.
A query optimizer is the component of a database system re-
sponsible to determine the optimum plan for a query execu-
tion. Fig.1. Illustrate the general query optimizer architecture.
Modules that compose this architecture are grouped according
to query optimization phases. Rewriter is the module that exe-
cutes the rewriting phase. Generator, Selector, Cost estimator,
Statistics estimator and Planner are the modules that execute
the planning phase [2].
Rewriter: Rewrites from the original query, a set of equivalent
queries by applying a set of transformations. Transformations
depend on declarative characteristics of the original query. If
the rewriting is beneficial then the original query is discarded.

Fig.1. Query optimization architecture

Planner: Planners examine all the possible optional plans for
query produced by rewriter and select the cheapest one to be
generating the answer for the query. Planning phase consists
of following sub modules:
• Generator: Generates a set of query execution plans to

process a query. This execution plans are represented by
algebraic expressions.

• Selector: Select a set of algorithms to execute each opera-
tor that is included in algebraic expressions related to a
query execution plan proposed by the Generator module.

• Cost estimator: It specify calculus functions (in accordance
a cost model) to evaluate execution plans to estimate their
cost.

• Statistical estimator: It specifies a set of functions to esti-
mate relations size, indexes and results, as well as, the dis-
tribution feculence of the values associated to an attribute
include by a relation.

• Planner: It employs a search strategy to examine the exe-
cution plans space (with an associate cost) and select the
less expensive in order to process a query and generate
the result.

3 CBR TECHNIQUE FOR QUERY OPTIMIZATION
 The query optimization technique that we propose is an adap-
tation of the general case-based reasoning process. This tech-
nique aims to solve the problem of lack of metadata, thus it is
feasible to be applied in different execution environments
which can’t afford expensive acquisition and maintenance of
metadata [11]. A ubiquitous computing environment is an
appropriate example for it. Since case and problem are the
main units of knowledge in this learning approach, we select
useful knowledge for query optimization in order to instanti-
ate both concepts. According to our approach, a case repre-
sents the knowledge related to the experience gained from the
optimization and evaluation of a query. A problem represents
a new query, that we call query problem, which is submitted
in some application pertaining to the ubiquitous environment.
The reasoning process that must be accomplished to optimize
a query problem is elaborate in the following

• Retrieval: This step is based on a similarity function in

order to perform a smart search to retrieve the most rele-
vant cases to solve the query problem. Among these rele-
vant cases, the one that minimizes the cost function of the
problem is selected

• Reuse: Reusing step is related to the adaptation process of

the execution plan involved by the case that resulted rele-
vant to solve the new query.

• Review: Reviewing step consists in verify the query by

means of its execution. During this step measures about
performance as well as computational resources con-
sumption are taken.

• Retention: Finally, in the retaining step, the problem and

its solution are stored in the case base in form of a new
case.

Since this approach is based in a try and learn principle, when
a relevant case to solve a query problem is not founded in the
case base, is necessary to propose a new solution [5].

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 6, June-2013 1213
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

Fig.2. Case based reasoning cycle
A problem is composed by a query problem, the specifica-

tion of the execution context by means of a set of measures
that express the availability of different computational re-
sources, and finally, the optimization objective that can be a
single resource. Illustrating case based technique with exam-
ple

Query 1

SELECT boarding_up, aligting_up FROM unique_name
WHERE route_no between 1 and 10.

The query Q contain three clauses select from and where.

As it will be the new query it will be store in case base in form
of new learn case. Mainclass for this query is unique_name
(from clause) and subclasses will be created on basis of where
clause as shown in table below:

TABLE.1
Example Query 1

Category Clause Values
Main class From Unique_name

 Subclass Where
route_no

between 1 and 10

Querytype Select boarding_up,
aligting_up

As it store in case base as learned case now for any new

query which is similar to this query we can reuse it from case
base and readapt the values according to new query. Let’s take
example of new query
Query 2

SELECT boarding _dwn , aligting _dwn FROM
unique_name WHERE route_no between 1 and 10.

 The query Q’ contain three clauses select, from and where.

Now here we can apply case based reasoning technique and
instead of generating a new execution plan for this query we
will retrieve similar case from case base. First CBR technique
start with retrieval process where new query Q’ will be com-
pared with already stored query Q and similarity will be
checked.

TABLE. 2
Example Query 2

Category Clause Values
Main class From Unique_name

Subclass Where
route_no

route_no be-
tween 1 and 10

Querytype Select boarding_dwn,
aligting_dwn

We were using a similarity function that is performed in

following steps. First we find the membership of a query
through an inter-class similarity function. Then, the most rele-
vant case within the class must be retrieved by means of an
intra-class similarity function [7],[9]. After finding the most
relevant case, a detailed comparison between the clauses of
the new query and the relevant query (the query included by
the relevant case) is carried out. This determines a similarity
level between the two queries [3],[8].

In Q and Q’ first comparison will be done through inter
class similarity function which will be perform on the basis of
mainclass category. Here in this example we can see that Q
and Q’ were belonging to the same mainclass thus second step
of similarity check will be perform i.e. is intra class similarity
check to find out the most relevant case. Now comparison will
be done on basis of sub classes based on where clause.

WHERE clause of Q = route_no between 1 and 10

WHERE clause of Q’ = route_no between 1 and 10

 As both queries containing similar where clause condition

hence Q can be considered as most relevant case for Q’After
completion of retrieval process next step comes is reuse where
we have to adapt our retrieval case according to new query
problem using similarity level. The similarity level between
two queries indicates which clauses of the relevant query must
be adapted. This adaptation can be performed only on Select
and Where clauses. Reason behind this is that for Select
clause, interesting attributes to be projected can vary and for
Where clause, comparison operators or some values related to
the variables can be modified. On the other hand, the From
clause cannot be changed because the tables to be queried
cannot be changed. Table 3 illustrates the diverse similarity
levels

TABLE. 3

Similarity level between two queries

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 6, June-2013 1214
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

Similarity level Similar clause Different clause

4 Select,from,where

3 From ,where

Select

2 From, select

Where

1 From

Select, where

0 -------------------- Select from
where

In our example similarity level between both the queries Q

and Q’ is 3, modification will performed only in select clause
value which is

SELECT clause of Q = boarding_up, aligting_up
SELECT clause of Q’ = boarding_dwn, aligting_dwn.
Next is review step where proposed solution is verified

through execution. Finally in the end retention of newly
learned case is performed for future use. at the retaining step,
a case is stored in case base, according to a defined classifica-
tion. It is possible to know to which class pertains a case de-
termining the similarity between the class of the query prob-
lem and the class in the case base.

4 REPLACEMENT POLICY FOR DYNAMICITY

As this query optimization technique is being proposed for
ubiquitous type computing environment where acquisition of
metadata is not feasible. in our proposal we were trying to use
a machine learning technique i.e case based reasoning where
query optimization is achieved thorough previously experi-
enced situation, which has been captured and learned in a
way that it can be reused in the solving of future problems. As
if we were storing every new learn case in case base again
there will be a possibility that size of case base will become
huge and bulky. Here we were proposing a replacement poli-
cy for dynamic deletion of case from case base. So that the sys-
tem should be able to detect those cases in its case base which
will no longer relevant and thus delete them. This will main-
tain size of case base. Selection and deletion of irrelevant cases
from case base performed on concept of least recently used
case in which the case which has minimum references were
will be deleted first.
When a new learned case is inserted into the case base, system
sets the current cost case equal to zero. Thereafter, each time a
user process references this case; it resets the current cost with
increment. For all cases, the maximum value for the current
cost is the number of time that case is referred [10].
When memory pressure exists, the system responds by remov-
ing irrelevant cases from the case base. To determine which
plans to remove, the system repeatedly examines the state of
each case and removes cases when their current cost is zero or
minimum. A case with zero current cost is removed automati-
cally when memory pressure exists. System repeatedly exam-

ines the cases until enough have been removed to satisfy
memory requirements.
For example if lets suppose we have can accommodate only
five cases at time than when a new case is arrive, than all case
will examined and the case with minimum cost will be delet-
ed.

5 CONCLUSION
We propose a query optimization technique that exploits case-
based reasoning with replacement policy in order to improve
query optimization in ubiquitous environments. Our approach
deals with the challenge that the lack of metadata implies in
this execution context. In our proposal we used a technique
that is able to utilize the specific knowledge of previously ex-
perienced, concrete problem situations (cases). Case-based
reasoning (CBR) is an approach to problem solving that em-
phasizes the role of prior experience during future problem
solving (i.e., new problems are solved by reusing and if neces-
sary adapting the solutions to similar problems that were
solved in the past). CBR is memory based, thus reflecting hu-
man use of remembered problems and solutions as a starting
point for new problem solving [4]. In addition, we propose a
technique for detecting inappropriate cases from its case base
and eliminate them so that system will achieve dynamic man-
agement as well. This will provide database of system manage
able, relevant and compact.

REFERENCES
[1] Syedur Rahman1 , A. M. Ahsan Feroz2, Md. Kamruzzaman3 and

Meherun Nesa Faruque4,” Analyze Database Optimization Tech-
niques”, IJCSNS International Journal of Computer Science and
Network Security, VOL.10 No.8, August 2010.

[2] Y. Ioannidis, “Query optimization,” ACM Comput. Surv., vol. 28, no.
1, pp. 121–123, 1996.

[3] Lourdes Ang´elica Mart´ınez-Medina and Christophe Bibineau and
Jose Luis Zechinelli-Martini, “Query optimization using case-based
reasoning in ubiquitous environment”s in Mexican International
Conference on Computer Science, 2009.

[4] L. D. Mantaras, R. McSherry, and et al, “Retrieval, reuse, revision and
retention in case-based reasoning,” Knowl. Eng. Rev., vol. 20, no. 3,
pp. 215–240, 2005.

[5] A. Aamodt and E. Plaza, “Case-based reasoning: Foundational is-
sues, methodological variations, and system approaches,” AI Com-
munications, vol. 7, no. 1, pp. 39–59, 1994.

[6] M. Franklin, “Challenges in ubiquitous data management,” in Infor-
matics - 10 Years Back. 10 Years Ahead., R. Wilhelm, Ed. Springer-
Verlag, 2001, pp. 24–33.

[7] M. Gu, X. Tong, and A. Aamodt, “Comparing similarity calculation
methods in conversational cbr,” in In: Proceedings of the 2005 IEEE
International Conference on Information Reuse and Integration, 2005,
pp. 427–432.

[8] A. Tversky and I. Gati, “Studies of similarity,” 1978
[9] R. Bergmann and A. Stahl, “Similarity measures for object oriented

case representations,” in In: Proceedings of the 4th European Work-
shop on Advances in Case-Based Reasoning B, B. Smyth and P. Cun-
ningham, Eds. Springer Verlag, 1998.

[10] Mcrosoft,“Excutionplancachingandreuse,”2008,http://technet.micro
soft.com/enus/library/bb545450.aspx.[Online].Available:http://tec
hnet.microsoft.com/enus/library/ms181055.aspx

[11] G. A. A. Deyand, P. Brown, and et al, “Towards a better understand-
ing of context and context-awareness,” in In: Proceedings of the 1st

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 6, June-2013 1215
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

international symposium on Handheld and Ubiquitous Computing
(HUC 1999), September 1999.

IJSER

http://www.ijser.org/

	1 Introduction
	2 traditional query optimization technique
	3 cbr technique for query optimization
	4 replacement policy for dynamicity
	5 Conclusion
	References

